| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 | // Copyright 2018 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// CPU affinity functionspackage uniximport (	"unsafe")const cpuSetSize = _CPU_SETSIZE / _NCPUBITS// CPUSet represents a CPU affinity mask.type CPUSet [cpuSetSize]cpuMaskfunc schedAffinity(trap uintptr, pid int, set *CPUSet) error {	_, _, e := RawSyscall(trap, uintptr(pid), uintptr(unsafe.Sizeof(*set)), uintptr(unsafe.Pointer(set)))	if e != 0 {		return errnoErr(e)	}	return nil}// SchedGetaffinity gets the CPU affinity mask of the thread specified by pid.// If pid is 0 the calling thread is used.func SchedGetaffinity(pid int, set *CPUSet) error {	return schedAffinity(SYS_SCHED_GETAFFINITY, pid, set)}// SchedSetaffinity sets the CPU affinity mask of the thread specified by pid.// If pid is 0 the calling thread is used.func SchedSetaffinity(pid int, set *CPUSet) error {	return schedAffinity(SYS_SCHED_SETAFFINITY, pid, set)}// Zero clears the set s, so that it contains no CPUs.func (s *CPUSet) Zero() {	for i := range s {		s[i] = 0	}}func cpuBitsIndex(cpu int) int {	return cpu / _NCPUBITS}func cpuBitsMask(cpu int) cpuMask {	return cpuMask(1 << (uint(cpu) % _NCPUBITS))}// Set adds cpu to the set s.func (s *CPUSet) Set(cpu int) {	i := cpuBitsIndex(cpu)	if i < len(s) {		s[i] |= cpuBitsMask(cpu)	}}// Clear removes cpu from the set s.func (s *CPUSet) Clear(cpu int) {	i := cpuBitsIndex(cpu)	if i < len(s) {		s[i] &^= cpuBitsMask(cpu)	}}// IsSet reports whether cpu is in the set s.func (s *CPUSet) IsSet(cpu int) bool {	i := cpuBitsIndex(cpu)	if i < len(s) {		return s[i]&cpuBitsMask(cpu) != 0	}	return false}// Count returns the number of CPUs in the set s.func (s *CPUSet) Count() int {	c := 0	for _, b := range s {		c += onesCount64(uint64(b))	}	return c}// onesCount64 is a copy of Go 1.9's math/bits.OnesCount64.// Once this package can require Go 1.9, we can delete this// and update the caller to use bits.OnesCount64.func onesCount64(x uint64) int {	const m0 = 0x5555555555555555 // 01010101 ...	const m1 = 0x3333333333333333 // 00110011 ...	const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...	const m3 = 0x00ff00ff00ff00ff // etc.	const m4 = 0x0000ffff0000ffff	// Implementation: Parallel summing of adjacent bits.	// See "Hacker's Delight", Chap. 5: Counting Bits.	// The following pattern shows the general approach:	//	//   x = x>>1&(m0&m) + x&(m0&m)	//   x = x>>2&(m1&m) + x&(m1&m)	//   x = x>>4&(m2&m) + x&(m2&m)	//   x = x>>8&(m3&m) + x&(m3&m)	//   x = x>>16&(m4&m) + x&(m4&m)	//   x = x>>32&(m5&m) + x&(m5&m)	//   return int(x)	//	// Masking (& operations) can be left away when there's no	// danger that a field's sum will carry over into the next	// field: Since the result cannot be > 64, 8 bits is enough	// and we can ignore the masks for the shifts by 8 and up.	// Per "Hacker's Delight", the first line can be simplified	// more, but it saves at best one instruction, so we leave	// it alone for clarity.	const m = 1<<64 - 1	x = x>>1&(m0&m) + x&(m0&m)	x = x>>2&(m1&m) + x&(m1&m)	x = (x>>4 + x) & (m2 & m)	x += x >> 8	x += x >> 16	x += x >> 32	return int(x) & (1<<7 - 1)}
 |